Что больше — Луна или Земля? Размеры луны Соотношение размеров земли и луны

Луна с незапамятных времен была постоянным спутником нашей планеты и самым близким к ней небесным телом. Естественно, человеку всегда хотелось там побывать. Но далеко ли туда лететь и какое до нее расстояние?

Расстояние от Земли до Луны теоретически измеряется от центра Луны до центра Земли. Измерить это расстояние обычными методами, используемыми в обычной жизни, невозможно. Поэтому дистанция до земного спутника вычислялась по тригонометрическим формулам.

Аналогично Солнцу, Луна испытывает постоянное движение на земном небе вблизи эклиптики. Тем не менее, это движение значительно отличается от движения Солнца. Так плоскости орбит Солнца и Луны различаются на 5 градусов. Казалось бы, вследствие этого траектория Луны на земном небе должна быть похожа в общих чертах на эклиптику, отличаясь от нее только сдвигом на 5 градусов:

В этом движение Луна напоминает движение Солнца – с запада на восток, в противоположном направлении суточному вращению Земли. Но кроме того Луна движется по земному небу гораздо быстрее Солнца. Это связано с тем, что Земля совершает оборот вокруг Солнца примерно за 365 суток (земной год), а Луна вокруг Земли всего за 29 суток (лунный месяц). Это различие и стало стимулом к разбивке эклиптики на 12 зодиакальных созвездий (за один месяц Солнце смещается по эклиптике на 30 градусов). За время лунного месяца происходит полная смена фаз Луны:

В дополнение к траектории движения Луны добавляется ещё и фактор сильной вытянутости орбиты. Эксцентриситет орбиты Луны составляет 0.05 (для сравнения у Земли этот параметр равен 0.017). Отличие от круговой орбиты Луны приводит к тому, что видимый диаметр Луны постоянно меняется от 29 до 32 угловых минут.

За сутки Луна смещается относительно звезд на 13 градусов, за час примерно на 0.5 градусов. Современные астрономы часто используют покрытия Луны для оценок угловых диаметров звезд вблизи эклиптики.

От чего зависит движение Луны

Важным моментом теории движения Луны является факт того, что орбита Луны в космическом пространстве не является неизменной и стабильной. По причине сравнительно небольшой массы Луны, она подвержена постоянным возмущениям от более массивных объектов Солнечной Системы (прежде всего Солнца и Луны). Кроме того, на орбиту Луны оказывают влияние сплюснутость Солнца и гравитационные поля других планет Солнечной Системы. В результате этого величина эксцентриситета орбиты Луны испытывает колебания между 0.04 и 0.07 с периодом в 9 лет. Следствием этих изменений стало такое явление, как суперлуние. Суперлунием называется астрономическое явление, в ходе которого полная луна в несколько раз больше по угловым размерам, чем обычно. Так во время полнолуния 14 ноября 2016 года Луна находилась на рекордно близком расстоянии с 1948 года. В 1948 году Луна была на 50 км ближе, чем в 2016 году.

Кроме того наблюдаются и колебания наклонения лунной орбиты к эклиптике: примерно на 18 угловых минут каждые 19 лет.

Чему равно

Космическим кораблям придется потратить на полет к земному спутнику немало времени. До Луны нельзя лететь по прямой – планета будет уходить по орбите в сторону от точки назначения, и путь придется корректировать. При второй космической скорости в 11 км/с (40 000 км/ч) полет теоретически займет около 10 часов, но на деле это будет происходить дольше. Все потому, что корабль на старте постепенно наращивает скорость в атмосфере, доводя ее до значения в 11 км/с, чтобы вырваться из поля тяготения Земли. Затем кораблю придется тормозить при подлете к Луне. Кстати, эта скорость- максимум, чего удалось добиться современным космическим кораблям.

Пресловутый полет американцев на Луну в 1969 году, согласно официальным данным, занял 76 часов. Быстрее всех до Луны удалось долететь аппарату НАСА «Новые горизонты» — за 8 часов 35 минут. Правда, он не приземлился на планетоид, а пролетел мимо – у него была другая миссия.

Свет от Земли до нашего спутника доберется очень быстро – за 1,255 секунд. Но полеты на световых скоростях – пока что из области фантастики.

Можно попытаться представить путь до Луны в привычных величинах. Пешком при скорости 5 км/ч дорога до Луны займет порядка девяти лет. Если поехать на машине на скорость в 100 км/ч, то добираться до земного спутника придется 160 дней. Если бы на Луну летали самолеты, то рейс до нее продлился бы где-то 20 дней.

Как в древней Греции астрономы рассчитывали расстояние до Луны

Луна стала первым небесным телом, до которого удалось рассчитать расстояние от Земли. Считается, что первыми это сделали астрономы в Древней Греции.

Измерить расстояние до Луны пытались с незапамятных времен – первым это попытался сделать Аристарх Самосский. Он оценил угол между Луной и Солнцем в 87 градусов, поэтому вышло, что Луна ближе Солнца в 20 раз (косинус угла равного 87 градуса равен 1/20). Ошибка измерений угла привела к 20-кратной ошибке, сегодня известно, что это отношение на самом деле равно 1 к 400 (угол равен примерно 89.8 градусов). Большая ошибка была вызвана трудностью оценок точного углового расстояния между Солнцем и Луной с помощью примитивных астрономических инструментов Древнего мира. Регулярные солнечные затмения к этому времени уже позволили древнегреческим астрономам сделать вывод о том, что угловые диаметры Луны и Солнца примерно одинаковы. В связи с этим Аристарх сделал вывод, что Луна меньше Солнца в 20 раз (на самом деле примерно в 400 раз).

Для вычисления размеров Солнца и Луны относительно Земли Аристарх использовал другой метод. Речь идет о наблюдениях лунных затмений. К этому времени древние астрономы уже догадались о причинах этих явлений: Луна затмевается тенью Земли.

На схеме выше хорошо видно, что разность расстояний с Земли до Солнца и до Луны пропорциональна разнице между радиусами Земли и Солнца и радиусами Земли и её тени на расстояние Луны. Во времена Аристарха уже удалось оценить, что радиус Луны равен примерно 15 угловым минутам, а радиус земной тени составляет 40 угловых минут. То есть размер Луны получался примерно в 3 раза меньше размера Земли. Отсюда зная угловой радиус Луны можно было легко оценить, что Луна находится от Земли примерно в 40 диаметрах Земли. Древние греки могли лишь приблизительно оценить размеры Земли. Так Эратосфен Киренский (276 – 195 годы до нашей эры) на основе различий в максимальной высоте Солнца над горизонтом в Асуане и Александрии во время летнего солнцестояния определил, что радиус Земли близок к 6287 км (современное значение 6371 км). Если подставить это значение в оценку Аристарха насчет расстояния до Луны, то оно будет соответствовать примерно 502 тысяч км (современное значение среднего расстояния от Земли до Луны составляет 384 тысяч км).

Чуть позже математик и астроном II века до н. э. Гиппарх Никейский подсчитал, что расстояние до земного спутника в 60 раз больше, чем радиус нашей планеты. Его расчеты основывались на наблюдениях за движением Луны и его периодических затмениях.

Так как в момент затмения Солнце и Луна будут иметь одинаковые угловые размеры, то по правилам подобия треугольников можно найти отношение расстояний до Солнца и до Луны. Эта разница составляет 400 раз. Применяя еще раз эти правила, только уже по отношению к диаметрам Луны и Земли, Гиппарх вычислил, что диаметр Земли больше диаметра Луны в 2,5 раза. Т.е R л = R з /2,5.

Под углом в 1′ можно наблюдать предмет, размеры которого в 3 483 раза меньше, чем расстояние до него – эта информация во времена Гиппарха была всем известна. То есть, при наблюдаемом радиусе Луны в 15′ она будет ближе к наблюдателю в 15 раз. Т.е. отношение расстояния до Луны к ее радиусу будет равно 3483/15= 232 или S л = 232R л.

Соответственно, дистанция до Луны – это 232* R з /2,5= 60 радиусов Земли. Это получается 6 371*60=382 260 км. Самое интересное, что измерения, выполненные при помощи современных инструментов, подтвердили правоту античного ученого.

Сейчас измерение дистанции до Луны проводится при помощи лазерных приборов, позволяющих измерить его с точностью до нескольких сантиметров. При этом измерения происходят за очень короткое время – не более 2 секунд, за которое Луна удаляется по орбите примерно на 50 метров от точки отправки лазерного импульса.

Эволюция методик измерения расстояния до Луны

Только с изобретением телескопа астрономы смогли получить более-менее точные значения параметров орбиты Луны и соответствия её размеров с размером Земли.

Более точный метод измерения расстояния до Луны появился в связи с развитием радиолокации. Первая радиолокация Луны была проведены в 1946 году в США и Великобритании. Радиолокация позволяла измерить расстояние до Луны с точностью в несколько километров.

Ещё более точным методом измерения расстояния до Луны стала лазерная локация. Для его реализации в 1960х годах на Луне было установлено несколько уголковых отражателей. Интересно отметить, что первые эксперименты по лазерной локации были проведены ещё до установки уголковых отражателей на поверхности Луны. В 1962-1963 годах в Крымской обсерватории СССР были проведены несколько экспериментов по лазерной локации отдельных лунных кратеров с использованием телескопов диаметром от 0.3 до 2.6 метров. Эти эксперименты смогли определять расстояние до поверхности Луны с точностью в несколько сотен метров. В 1969-1972 годы астронавты программы “Аполлон” доставили на поверхность нашего спутника три уголковых отражателя. Среди них наиболее совершенным был отражатель миссии “Апполон-15”, так как он состоял 300 призм, тогда как два других (миссии “Апполон-11” и “Апполон-14”) только из ста призм каждый.

Кроме того в 1970 и 1973 годах СССР доставил на поверхность Луны ещё два французских уголковых отражателя на борту самоходных аппаратов “Луноход-1” и “Луноход-2”, каждый из которых состоял из 14 призм. Использование первого из этих отражателей обладает незаурядной историей. За первые 6 месяцев работы лунохода с отражателем удалось провести около 20 сеансов лазерной локации. Однако затем из-за неудачного положения лунохода вплоть до 2010 года не удавалось использовать отражатель. Лишь снимки нового аппарата LRO помогли уточнить положение лунохода с отражателем, и тем самым возобновить сеансы работы с ним.

В СССР наибольшее количество сеансов лазерной локации было проведено на 2.6-метровом телескопе Крымской обсерватории. Между 1976 и 1983 годами на этом телескопе было проведено 1400 измерений с погрешностью в 25 сантиметров, затем наблюдения были прекращены в связи со свертыванием советской лунной программы.

Всего же с 1970 по 2010 годы в мире было проведено примерно 17 тысяч высокоточных сеансов лазерной локации. Большинство из них было связано с уголковым отражателем “Аполонна-15” (как говорилось выше, он является наиболее совершенным – с рекордным количеством призм):

Из 40 обсерваторий, способных выполнять лазерную локацию Луны лишь несколько могут выполнять высокоточные измерения:

Большинство сверхточных измерений выполнено на 2-метровом телескопе в техасской обсерватории имени Мак Дональда:

В то же время наиболее точные измерения выполняет инструмент APOLLO, который был установлен на 3.5-метровом телескопе обсерватории Апач Пойнт в 2006 году. Точность его измерений достигает одного миллиметра:

Эволюция системы Луна и Земля

Главной целью всё более точных измерений расстояния до Луны являются попытки более глубокого понимания эволюции орбиты Луны в далеком прошлом и в отдаленном будущем. К настоящему времени астрономы пришли к выводу, что в прошлом Луна находилась в несколько раз ближе к Земле, а так же обладала значительно более коротким периодом вращения (то есть не была приливно захваченной). Этот факт подтверждает импактную версию образования Луны из выброшенного вещества Земли, которая преобладает в наше время. Кроме того, приливное воздействие Луны приводит к тому, что скорость вращения Земли вокруг своей оси постепенно замедляется. Скорость этого процесса составляет увеличение земных суток каждый год на 23 микросекунды. За один год Луна отдаляется от Земли в среднем на 38 миллиметров. Оценивается, что в случае если система Земля-Луна переживет превращение Солнца в красный гигант, то через 50 миллиардов лет земные сутки сравняются с лунным месяцем. В результате Луна и Земля будут всегда повернуты к друг другу только одной стороной, как сейчас наблюдается в системе Плутон-Харон. К этому времени Луна отдалится до, примерно, 600 тысяч километров, а лунный месяц увеличится до 47 суток. Кроме того, предполагается, что испарение земных океанов через 2.3 миллиардов лет приведет к ускорению процесса удаления Луны (земные приливы значительно тормозят процесс).

Кроме того, расчеты показывают, что в дальнейшем Луна снова начнет сближаться с Землей по причине приливного взаимодействия с друг другом. При приближении к Земле на 12 тысяч км Луна будет разорвана приливными силами, обломки Луны образуют кольцо наподобие известных колец вокруг планет-гигантов Солнечной Системы. Другие известные спутники Солнечной Системы повторят эту судьбу гораздо раньше. Так Фобосу отводят 20-40 миллионов лет, а Тритону около 2 миллиардов лет.

Каждый год расстояние до земного спутника возрастает в среднем на 4 см. Причины – движение планетоида по спиральной орбите и постепенно падающая мощность гравитационного взаимодействия Земли и Луны.

Между Землей и Луной теоретически можно разместить все планеты Солнечной системы. Если сложить диаметры всех планет, включая Плутон, то получится величина в 382 100 км.

Украшением ночного неба помимо россыпи звезд, безусловно, является Луна. Благодаря сочетанию ее размера и расстояния до Земли, она является вторым по яркости небесным объектом и может полностью заслонить солнечный диск во время затмения. Неудивительно, что ночное светило не одно тысячелетие притягивает к себе внимание человечества.

Если бы у Земли не было Луны, многое сложилось бы иначе:

  • сутки были бы значительно короче;
  • смена времен года и климат характеризовались бы нестабильностью;
  • происходили бы менее выраженные приливы и отливы;
  • появление на планете жизни в ее теперешнем виде было бы под вопросом.

Диаметр Луны

Среднее значение диаметра Луны не слишком большое по космическим меркам число - 3474,1 км. Это приблизительно в два раза меньше, чем расстояние от Москвы до Владивостока.

Тем не менее Луна занимает пятое место по размеру среди естественных спутников планет Солнечной системы:

  1. Ганимед.
  2. Титан.
  3. Каллисто.
  4. Луна.

А вот уже при сравнении размеров спутников по отношению к их планетам Луне нет равных. Имея диаметр, составляющий четверть земного, она занимает первое место. Кроме того, ее размер больше, чем у Плутона.

Какое расстояние от Земли до Луны

Величина непостоянная. В среднем между центрами планеты и ее естественного спутника 384 400 километров. В этом пространстве поместилось бы еще примерно 30 Земель, а свету для преодоления такого расстояния нужно 1,28 секунды.

Что если бы до ближайшего небесного тела можно было добраться на автомобиле со скоростью 95 км/час? Учитывая, что вся дистанция - это примерно 10 окружностей Земли, на путешествие ушло бы столько же времени, как и на 10 объездов планеты по экватору. То есть чуть меньше шести месяцев. Пока быстрее всего расстояние до Луны преодолела межпланетная станция «Новые горизонты», которая на своем пути к Плутону пересекла орбиту спутника спустя восемь с половиной часов после запуска.

Орбита Луны не идеальный круг , а овал (эллипс), внутри которого находится Земля. В разных точках он расположен ближе или дальше от планеты. Из-за этого, при вращении вокруг общего с Землей центра масс, спутник то приближается, то отдаляется. Так, меньше всего километров разделяет небесные тела, когда ночное светило находится в месте орбиты под названием перигей. В точке, обозначающейся как апогей, спутник наиболее отдален от планеты. Минимальное расстояние - 356 400 км, а максимальное - 406 700 км. Таким образом, дистанция колеблется от 28 до 32 земных диаметров.

Первые близкие к верным оценки расстояния до «соседки» Земли были получены еще во II в. н. э. Птолемеем. В наше время, благодаря современным светоотражающим приборам, установленным на спутнике, расстояние удалось измерить наиболее точно (с погрешностью в несколько см). Для этого на Луну направляют лазерный луч. Потом отмечают, за какой период он вернется к Земле, отразившись. Зная скорость света и время, за которое он достиг датчиков, несложно вычислить расстояние.

Как наглядно оценить размер Луны и ее расстояние до Земли

Земной диаметр примерно в 4 раза больше Лунного , а объем - в 64 раза. Расстояние до ночного светила равно примерно 30 диаметрам планеты. Чтобы наглядно оценить дистанцию от Земли до ее спутника и сравнить их размеры, понадобятся два мяча: баскетбольный и теннисный. Соотношения диаметров:

  • Земли (12 742 км) и Луны (3474,1 км) - 3,7: 1 ;
  • стандартного баскетбольного мяча (24 см) и теннисного (6,7 см) - 3,6:1.

Значения довольно близкие. Таким образом, если бы Земля была размером с баскетбольный мяч, то ее спутник - с теннисный.

Можно попросить людей представить , что Земля - это баскетбольный мяч, а Луна теннисный, и показать, насколько в таком масштабе спутник удален от планеты. Большинство, скорее всего, предположат расстояние от 30 см до нескольких шагов.

На самом деле, чтобы показать верное расстояние, придется отойти на чуть больше, чем семь метров. Так, между планетой и ее спутником в среднем 384 400 км, а это примерно 30 Земель или соответственно 30 баскетбольных мячей. Умножение диаметра спортивного снаряда на 30 дает результат 7,2 м. Это примерно 9 мужских или 11 женских шагов.

Видимый размер Луны с Земли

360 угловых градусов - вся окружность небесной сферы. При этом ночное светило занимает на ней примерно половину одного градуса (в среднем 31 минуту) - это угловой (видимый) диаметр. Для сравнения: ширина ногтя указательного пальца на расстоянии вытянутой руки - это примерно один градус, то есть две Луны.

По уникальному стечению обстоятельств видимые размеры Солнца и Луны для жителей Земли почти одинаковы. Это возможно из-за того, что диаметр ближайшей звезды в 400 раз превышает диаметр спутника, но и находится дневное светило во столько же раз дальше. Благодаря такому совпадению среди всех планет, вращающихся вокруг Солнца, только на Земле можно наблюдать его полное затмение.

Меняется ли размер Луны

Конечно же, истинный диаметр спутника остается одинаковым, однако видимый размер может меняться. Так, Луна кажется заметно больше во время восхода и заката . Когда ночное светило низко над горизонтом, расстояние до наблюдателя не уменьшается, а, наоборот, немного увеличивается (на радиус Земли). Визуальный эффект, казалось бы, должен быть обратным. Единого ответа, объясняющего причину иллюзии, нет. С уверенностью можно лишь заявить, что это красивое явление своим существованием обязано только особенностям работы человеческого мозга, а не, например, влиянию атмосферы Земли.

Расстояние между Луной и Землей периодически меняется от максимального (в апогее) до минимального (в перигее). Вместе с дистанцией варьируется и видимый диаметр спутника: от 29,43 до 33,5 угловой минуты. Благодаря этому возможны не только полные затмения , но и кольцевые (когда видимый размер Луны в апогее меньше солнечного диска). Примерно раз в 414 дней полнолуние совпадает с прохождением перигея. В это время можно наблюдать максимально большое ночное светило. Явление получило довольно громкое название суперлуние, однако видимый диаметр в этот момент всего лишь на 14% больше обычного. Разница очень незначительная, и простой наблюдатель отличий не заметит.

Благодаря точным измерениям расстояния, ученым удалось обнаружить сравнительно медленное, но постоянное увеличение дистанции между Землей и ее спутником. Скорость, с которой Луна отдаляется, - 3,8 см в год - слишком мала, чтобы можно было заметить существенное уменьшение видимого размера светила. Примерно в таком же темпе растут человеческие ногти. Тем не менее через 600 млн лет Луна настолько отдалится и, соответственно, уменьшится для земных наблюдателей, что полные солнечные затмения останутся в прошлом.

Стоит отметить, что спутник Земли , образовавшийся по современной теории от столкновения планеты с большим объектом 4,5 миллиарда лет назад, изначально находился в 10−20 раз ближе. Однако полюбоваться небом, украшенным светилом в 10−20 раз большего диаметра, чем сейчас, тогда было некому.

Видео

Понять, насколько далеко Луна находится от Земли, вы сможете, посмотрев это видео.

Луна – самый большой объект ночного звёздного неба. Приблизительно диаметр Луны сумели рассчитать ещё древние греки.

– пятый по величине естественный спутник в Солнечной системе, уступающий по размерам только трём спутникам Юпитера и одному спутнику Сатурна. Луна ненамного меньше Меркурия – самой маленькой из планет, и вдвое меньше Марса. По отношению к размерам своей планеты Луна занимает первое место среди спутников.

Размеры

Из-за вращения вокруг оси чуть «сплюснута» у полюсов, её диаметр на линии полюсов составляет 3471,94 км, а на линии экватора – 3476,28 км, что составляет около четверти земного диаметра. Так как наш спутник имеет шарообразную форму, можно рассчитать и другие геометрические размеры: длина экватора Луны равна 10920 км, объём нашего спутника составляет 1/50 земного, а площадь поверхности меньше земной в 13 раз.

Угловой диаметр

Так как лунная орбита представляет собой эллипс, угловой диаметр Луны меняется от 33’40” в ближайшей точке – апогее, до 29’24” в самой дальней точке – перигее. Когда находится низко над горизонтом, она кажется большей, чем в зените, вследствие оптической иллюзии, пока не имеющей объяснения. Угловые размеры спутника почти совпадают с угловыми размерами , из-за чего возможны полные солнечные затмения, когда диск Луны полностью закрывает солнечный.

Как измерили

Первым попытался определить диаметр Луны Аристарх Самосский в III веке до н. э. на основе измерений, проведённых во время солнечного затмения, и последующих вычислений на базе евклидовой геометрии. Из-за погрешности измерений расчёты оказались неточными. Сто лет спустя

ЛУНА - естественный спутник Земли. Л. обращается вокруг Земли по эллиптич. орбите с эксцентриситетом 0,05490 и большой полуосью, равной ср. расстоянию от Земли - 384 400 км. Наиб. расстояние от Земли в апогее 405 500 км, наименьшее в перигее 363 300 км.

Барицентр системы Земля-Луна находится на расстоянии 4670 км от центра масс Земли. Плоскость орбиты Л. наклонена к плоскости эклиптики на угол . Ср. скорость движения Л. по орбите 1,023 км/с (3683 км/ч). Суточная скорость видимого движения Л. среди звёзд . Период орбитального движения Л. 27,32166 сут (сидерический месяц) и равен периоду осевого вращения. Благодаря этому равенству к Земле постоянно обращено одно и то же полушарие Л. Смена фаз Л. происходит с периодом 29,53059 сут (синодический месяц). Экватор Л. имеет пост. наклон к плоскости эклиптики . Неравномерность орбитального движения при пост. скорости осевого вращения Л. приводит к явлению либрации по долготе с наибольшим значением . Наклон плоскости экватора Л. к плоскости её орбиты вызывает либрации по широте с наиб. значением. Благодаря либрациям с Земли наблюдается поверхности Л. Периодически вблизи фазы полнолуния Л. оказывается частично или полностью в конусе земной тени и происходят лунные затмения.

Геом. фигура Л. близка к сфере, ср. радиус к-рой 1738,0 км. Угл. радиус видимого диска Л. (на ср. расстоянии от Земли) . Площадь поверхности и объём Л. соответственно и Масса Л. равна , т. е. г. Ср. лунных пород . Неоднородности плотности лунных недр проявляются через аномалии в гравитац. поле Л. При общей нецентральности гравитац. поле Л. обладает местными аномалиями, вызывающими деформацию эквипотенциальных поверхностей. Наиб. крупные аномалии - масконы - имеют местный избыток масс ок. массы Л.

Тёмные области на поверхности Л. условно наз. морями, светлые - материками. Общая площадь морских образований на поверхности Л. . Осн. моря сосредоточены в пределах видимого полушария Л., что согласуется с разной мощностью коры на видимом и обратном полушариях. В масштабах всей Л. разность ср. уровней материков и морей достигает 2,3 км, в пределах видимого полушария это значение составляет 1,4 км. Круговые моря, связанные с масконами, располагаются в среднем на 1,3 км ниже уровня морей неправильной формы и на 4,0 км ниже ср. уровня материков. Осн. формой рельефа являются кольцевые структуры разл. размеров - кратеры ударного происхождения. Общее распределение числа кратеров (на единице площади) по размерам описывается степенной ф-цией. Следы тектонич. процессов зафиксированы в виде линейных структур в осн. типа разломов, борозд и складок. Поверхностный слой вещества Л.- реголит - представляет собой рыхлый покров раздробленных пород, состоящий из фрагментов различной крупности (величины), включая тонкую пылевидную фракцию. Средняя толщина слоя реголита 2-3 м.

Минералогич. состав лунных пород близок к земным породам типа базальтов, норитов и анортозитов. Основными породообразующими минералами, как и на Земле, являются пироксен, плагиоклаз, ильменит и оливин. При общем сходстве с земными лунные породы заметно отличаются по содержанию отд. окислов в базальтах, в частности железа (более ) и титана (до ). Нек-рые образцы базальтовых и но-ритовых пород имеют повышенное содержание калия, редкоземельных элементов и фосфора (т. н. криповые породы). Моря сложены породами базальтового типа. Материки состоят из пород анортозитового ряда. От морских базальтов и норитов (неморских базальтов) анортозиты отличаются более высоким содержанием окислов алюминия (до ) и кальция (до ). Содержание окислов железа и титана в этих породах существенно ниже. Плотность светлых материковых пород анортозитового состава меньше ср. плотности

Л. и составляет ок. 2,9 г/см 3 . Плотность морских базальтов 3,3 г/см 3 , т. е. практически совпадает со ср. плотностью Л. Это означает, что лёгкие анортозитовые породы образуют тонкую внеш. оболочку - лунную кору, а морские базальты имеют прямую связь с глубинным веществом недр.

Естественная сейсмичность недр Л. относительно невелика. Выделение полной сейсмич. энергии в теле Л. менее эрг в год, что в раз меньше, чем на Земле. Ср. магнитуда не превышает 2 балла но шкале Рихтера. Сейсмометры на поверхности позволяют фиксировать от 600 до 3000 лунотрясений в год. Согласно активным сейсмическим экспериментам и изучению характера распространения объёмных волн при глубокофокусных лунотрясениях, недра Л. делятся на неск. зон. Самая верх. зона, имеющая на видимой стороне мощность (толщину) ок. 60 км, а на обратной - ок. 100 км, отождествляется с лунной корой. Скорость продольных волн во втором слое мощностью ок. 250 км лежит в пределах от 7,8 до 8,1 км/с. Основными составляющими этого слоя --верх. мантии - могут быть оливин и пироксен. Третья зона - ср. мантия - имеет мощность ок. 500 км. Характерным для неё является уменьшение скорости поперечных волн до 3,6-4,0 км/с. По-видимому, морские базальты возникли в результате частичного пород в этой зоне. Ниж. область ср. мантии на глубинах 600-800 км включает очаги глубокофокусных лунотрясений. Четвёртая зона - ниж. мантия - отличается полным исчезновением поперечных волн, что может объясняться частично расплавленным состоянием пород. Следовательно, на глубине ок. 800 км кончается твёрдая оболочка - литосфера - и начинается лунная астеносфера, вероятная темп-ра верх. части к-рой оценивается значением ок. 1200 К. На глубине 1380-1570 км резко уменьшается скорость продольных волн, что выделяет границу пятой зоны - ядра. В предположении полного расплава вещества этой части лунных недр расчёты дают величину скорости продольных волн ок. 5 км/с. В качестве предварительной гипотезы выдвигается модель ядра, состоящего из сульфида железа, с массой не более массы всей Л.

Критич. скорость для Л. 2,38 км/с, первая космическая - 1,68 км/с. В большинстве случаев скорости теплового движения газовых частиц превышают эти значения, поэтому газы либо покидают окололунное пространство, либо рассеиваются на большие расстояния от поверхности Л. Газовая оболочка - атмосфера Л. - находится в сильно разреженном состоянии и по своим физ. свойствам аналогична условиям в земной . Осн. компонентами являются водород, гелий, неон и аргон в сильно ионизированном состоянии. Наиб. плотность газовой оболочки наблюдается в ночное время и в пересчёте на плотность у поверхности соответствует суммарной концентрации ионов газов ок. . В дневное время концентрация газов падает до. Эта величина составляет ~10 -13 концентрации молекул газов в земной атмосфере, но на три-четыре порядка выше концентрации частиц в солнечном ветре на расстоянии 1 а. е. от Солнца.

Л. практически не обладает глобальным магн. полем дипольной природы и является немагнитной, сравнительно непроводящей и холодной диэлектрич. сферой, поглощающей плазму солнечного ветра и потоки энергичных частиц, свободно падающих на её поверхность. Обтекая Л., солнечный ветер образует тень , протяжённость к-рой изменяется в зависимости от взаимной ориентации направления солнечного ветра и силовых линий межпланетного магн. поля. Величина глобального магн. поля на поверхности Л. не превышает 0,5 гамм. Напряжённость местного магн. поля, объясняемого в осн. палеомагнетизмом, может достигать в отд. случаях 100-300 гамм на материке,

от 43 до 103 гамм в районах переходного типа и от 40 до 3-6 гамм в морских районах.

По оценкам, основанным на наземных наблюдениях метеоритного вещества в околоземном пространстве, общий поток падающих на Л. твёрдых тел с массами от г (микрометеориты) до г (крупные метеориты и астероиды) составляет ок. Осн. массу составляют микрометеориты, падающие постоянно со скоростью ок. 25 км/с. По данным непосредственных измерений на поверхности Л., плотность потока этих частиц составляет Наличие пост. фона избыточной яркости в УФ- и видимой областях спектра, обнаруженного по наблюдениям непосредственно на поверхности, указывает на существование над поверхностью Л. разреженного пылевого облака толщиной ок. км, при размерах частиц 70 мкм и концентрации порядка , что в раз превышает концентрацию пылевых частиц в межпланетном пространстве.

Отражающая поверхность покровного вещества Л. имеет уникальные оптич. свойства. Индикатриса отражения Л. сильно вытянута в сторону источника света. Максимум яркости поверхности Л. достигается при совпадении направлений падающего и отражённого наблюдаемого лучей. Для условий наблюдения с Земли это соответствует фазе полнолуния. Визуальная звёздная величина Л. в истинное полнолуние составляет ок. . Геом. альбедо 0,147, сферич. альбедо 0,075, Ср. отражательная способность всей лунной поверхности , материковых областей , морских областей . Поверхностный слой Л. по своим оптич. свойствам в большой степени однороден. Отражённый Л. поток излучения частично поляризован. Максимум лунного света наступает при фазовых углах и достигает степени поляризации для всего освещённого диска примерно . Максимум отражённого излучения Л. приходится на длину волны примерно 0,6 мкм, т. е. по сравнению с солнечным светом имеет несколько красноватый оттенок. Степень покраснения варьирует в зависимости от типа поверхности. Максимум собственного Л. приходится на область 7 мкм. Темп-pa поверхности в подсолнечной точке достигает 400 К. К концу лунной ночи поверхность остывает до 100 К.

Вопросы образования и ранней истории Л. окончательно ещё не решены. Нет полной ясности относительно того, где сформировалась Л. как самостоятельное небесное тело. Нек-рые особенности хим. состава лунных пород позволяют предположить, что Л. и Земля образовались в одной и той же зоне Солнечной системы, но не были в прошлом единым целым. Гипотеза отделения Л. от Земли и гипотеза захвата Л. Землёй встречаются со многими трудностями. На самой ранней стадии существования Л. (4,3-4,6 млрд. лет назад) произошла глобальная магматич. дифференциация, в результате к-рой сформировались кора и верх. мантия Л. при весьма интенсивной метеоритной бомбардировке. Большинство крупных материковых кратеров и огромные впадины - лунные бассейны - появились именно в эту эпоху. Завершающая стадия образования гигантских впадин, ставших впоследствии на видимом полушарии морями, совпала с выплавлением и кристаллизацией на поверхности пород норитового состава. Процесс раннего лунного вулканизма, породивший базальтовое покрытие лунных морей, имел два всплеска активности недр. Первый завершился выплавлением базальтов со ср. возрастом 3,7 млрд. лет. Второй связан с выплавлением из недр базальтов со ср. возрастом 3,2 млрд. лет. Следующие два млрд. лет являются временем полного постепенного затухания лунного вулканизма и отвердения пород верх. и ср. мантии на глубину в несколько сотен км. Метеоритная бомбардировка превратилась в осн. фактор формирования совр. рельефа Л.

Лит.: Рускол Е. Л., Происхождение Луны, М., 1975; Галкин И. Н., Геофизика Луны, М., 1978; Сагитов М. У., Лунная гравиметрия, М., 1979; Шевченко В. В., Современная селенография, М., 1980; его же, Луна и ее наблюдение, М., 1983. В. В. Шевченко .

Заголовок шокирует. Понимаю. Все знают, что «это не так». Но давайте разберёмся – так это или не так.

Можем ли мы определить размеры Луны, исходя из тех данных, которые мы способны добыть из непосредственных наблюдений? Оказывается – можем. И вот как.

Во время солнечного затмения Луна своим телом закрывает Солнце – это и есть затмение. А с другой стороны, под освещением Солнца Луна отбрасывает тень на поверхность Земли. Находясь в зоне этой тени, наблюдатель видит полное солнечное затмение.

Направление солнечных лучей, которыми освещается Луна во время солнечного затмения, устанавливается просто. Угловые размеры Солнца и Луны почти одинаковы, именно это и обеспечивает полное затмение Солнца: диск Луны в точности соответствует диску Солнца и закрывает его.

А это значит, что лучи от Солнца попадают на Луну, первое, параллельным потоком и, второе, точно перпендикулярно поперечному сечению Луны.

Из этого, в свою очередь, следует, что тень от Луны имеет тот же самый размер, что и сама Луна.

Тень Луны на поверхности Земли во время солнечного затмения давно измерена – она имеет диаметр примерно 270 километров.

Это значит, что и размер Луны должен быть таким же – то есть 270 километров.

Если я не прав, попробуйте найти ошибку в этих «трёх соснах». А пока скептики ищут, я напомню следующее.

Современные представления о космосе как о пространстве, наполненном звёздами и планетами, сформировалось совсем недавно – начиная с Коперника. До него Земля была плоской, а звёзды представлялись всего лишь сверкающими светильниками, подвешенными на хрустальных сферах.

Совсем не обязательно, что Коперник прав. Могут быть и иные варианты модели космоса. Вот, например, важный вопрос, который я задавал читателям, интересующимся наукой, по поводу странной траектории Луны –

Рис. 1. Движение Луны относительно Земли: гладкая вершина – участок верхней (по рисунку) части траектории; точки слома – нижние (по рисунку) точки перегиба траектории.

В ранней статье «Земля вовсе не крутится вокруг Солнца » мы рассмотрели ситуацию, связанную с траекторией движения Луны. Согласно общепринятой научной версии, Луна должна двигаться по эпициклоиде.

В точках перегиба Луна сбрасывает скорость до нуля, а после снова набирает её до максимального значения. Со школы знаем: изменение скорости есть ускорение. С той же школы тоже знаем: ускорение, помноженное на массу, рождает силу.

Вот и возникает закономерный вывод: при таких колоссальных силах, которые формируются в точках перегиба эпициклоиды, ни один материал не выдержит таких нагрузок.

А это, в свою очередь, означает: либо Луна не движется так, как это предписывается ей общепринятыми представлениями науки, либо Луна не имеет массы.

Понятно, с наскока такую ситуацию не разберёшь, поэтому мы и продвигаемся постепенно – от статьи к статье. Но с необходимыми элементами пересмотра старых положений физики мне пришлось столкнуться при построении Единой теории поля , первые положения которой были сформированы ещё в монографиях « » и « ».

Наши проекты в области физики: «Единая теория поля // Theory of everything »; «Вакуум: (концепция, строение, свойства) »; «Периодическая система элементарных частиц ». А здесь: рецензия ИОФ РАН и описание ВЦ РАН.

А вот и наша гипотеза: формирование космических тел на примере Марса и Земли (на основе современных представлений о вакууме) . Соответствующий доклад был сделан в 2013 году на Гординских чтениях в Институте физик Земли РАН.

Рис. 1. Дикусар В.В., Тюняев А.А. Вакуум: концепция, строение, свойства // Отв. редактор член-корр. РАН Ю.А. Флёров. ФГБУН Вычислительный центр им. А.А. Дородницына Российской академии наук. 2013. Купить .

На мой взгляд, проблема описания реального мира – это изменяющаяся во времени проблема, которая зависит от наших текущих знаний об окружающем мире. Если позавчера Земля спокойно лежала на трёх китах, вчера встал выбор между концепциями Декарта и Ньютона , то сегодня к «законам» Ньютона появилось множество вопросов.

А завтра будет сформировано постинформационное общество, в котором реальностью станут совершенно новые технологии. Их смысл наглядно объяснили Малыш и Карлсон – когда Карлсон пытался найти зад у телевизора. Мы, знающие принцип работы телевизора, смеялись над незадачливым сказочным героем.